Defining the Harm in Harmful Interference

National Spectrum Management Association

May 20, 2009

Mitchell Lazarus
703-812-0440 | lazarus@fhhlaw.com
Introduction

- Concept of “harmful interference” is fundamental to spectrum management
 - governs in-band sharing (primary/secondary/unlicensed)
 - sets relationships among same-service users
- Definition of “harmful interference” is vague and subjective
 - past attempts to add rigor and predictability
- But a quantitative, forward-looking, predictable definition may not be feasible.
Most Spectrum Is Heavily Shared
“Harmful Interference” Governs Sharing

- **Primary users** protected against harmful interference from all other users.
- **Co-primary users** may not cause harmful interference to each other.
- **Secondary users** may not cause harmful interference to primary users, must accept harmful interference from primary users.
- **Licensees in same service** may not cause harmful interference to each other.
- **Unlicensed users** may not cause harmful interference to primary or secondary users, must accept harmful interference from everybody.
“Harmful Interference” Defined

- **Harmful Interference.** Interference which endangers the functioning of a radionavigation service or of other safety services or seriously degrades, obstructs, or repeatedly interrupts a radiocommunication service operating in accordance with [the ITU] Radio Regulations.
 47 C.F.R. § 2.1.
Parsing the Definition

1. As to radionavigation/other safety services: *interference which “endangers the functioning”*
 - safety service defined as:
 “[a]ny radio-communication service used permanently or temporarily for the safeguarding of human life and property.” 47 C.F.R. § 2.1.

2. As to other services: *interference which “seriously degrades, obstructs, or repeatedly interrupts.”*
Problems with Definition – Structural

- Phrased in terms of effects, not causes
 - cannot tell in advance whether given interference is “harmful”
 - definition is backward-looking, applies after the fact
- Safety/non-safety cross-over cases, e.g.:
 - 911 calls by cell phone
 - OnStar (emergency calls by satellite)
 - amateur radio during emergencies
 - these should qualify as “service used . . . temporarily for the safeguarding of human life and property”
 - but how to identify calls for heightened protection?
Problems with Definition – Application

- Criteria in definition that make interference “harmful” are vague and subjective:
 - “endangers,” “seriously degrades,” “obstructs,” “repeatedly interrupts”
- Some experts seek an objective, quantitative definition
 - would eliminate subjective judgment
 - would determine harmful interference in advance
 - different observers would reach same conclusion
- Will argue here that forward-looking objectivity is neither possible nor desirable.
Prior Attempts

- FCC Spectrum Policy Task Force saw need for objective/prospective definition:

 “[Harmful interference] is not defined in technical terms, making objective measurement difficult. . . . [T]he Commission needs to define interference rights more clearly on a prospective basis.” SPTF Report at 18-19 (Nov. 2002)

- “Interference temperature” proceeding:
 - “It is essential to quantify harmful interference” Notice of Inquiry ¶ 27 (Nov. 2003)
 - docket drew fewer than 100 filings, little convergence
Proceedings for New Technologies

- Nearly all spectrum below 50 GHz is licensed or in use
- New applications must squeeze into occupied spectrum
- Key question: whether newcomer will cause harmful interference to incumbents
 - forces reality-based interpretation of “harmful interference”
 - requires translating abstract terms of definition into practical decisions.
Recent Examples

- Rulemakings adopted:
 - TV white space
 - U-NII expansion
 - broadband over power line
 - ultra-wideband

- Waivers granted:
 - UltraVision (80-600 MHz)
 - Multispectral Solutions (5925-7250 MHz)
 - Curtis-Wright (960-3650 MHz)
 - SafeView (24.75-30 GHz).
Entire Proceeding on One Slide

- **Main debate:**
 1. Newcomer claims no risk of harmful interference to incumbent
 2. Incumbent claims certainty of harmful interference

- **Secondary debate:**
 - each side claims its application offers greater public interest.
Rarely Black or White – Mostly Gray

- Parties frame harmful interference:
 - certain to occur (incumbents) vs. impossible (newcomers)
- In practice, rarely yes/no, usually a matter of probabilities
 - victim might see $X\%$ impairment $Y\%$ of the time
 - numbers are seldom zero or 100
 - in recent cases, numbers have been small
- Both opponents and proponents overstate their claims
 - costs credibility, damages parties’ own interests.
Incumbents’ Exaggerations

- My service is vital to the public interest
 - therefore entitled to maximum protection
- I paid for my spectrum, so no one else can share it
- I can show incoming interference by:
 - stringing together worst-case possibilities
 - using implausible transmitter-receiver geometries
 - calculating with no other sources of radio noise ("Jurassic assumption")
 - burying unstated safety margins in my calculations
- “Any small risk of any interference to my service is harmful interference.”
Newcomers’ Exaggerations

- My proposed service is vital to public safety/homeland security, rural broadband, "third pipe" competition...
 - public interest justifies some risk of interference
- I can show my application won’t cause interference by:
 - downplaying the likelihood of interfering geometries
 - overstating the effects of ambient radio noise
 - underestimating victims’ receiver characteristics
 - overstating victims’ tolerance of brief interference
- My new technology should get the benefit of the doubt
Factors in “Harmful Interference”

- Whether to call a given degree of interference “harmful” depends on context:
 1. public interest in victim service vs. interfering service
 2. whether new application can work in less critical spectrum
 3. whether new application can be made less interfering
 - e.g.: lower power; lower duty cycle; frequency coordination; ability to sense and avoid victim devices
 4. sensitivity of victim equipment to interference
 - whether reasonably designed to be robust
 - whether can tolerate occasional interruptions
 5. whether an interfering device can be shut down.
From Criteria to Numbers

- An interfering signal of W microvolts/meter/kHz translates (roughly speaking) to $X\%$ impairment $Y\%$ of the time
 - numbers vary widely for different incumbent services
- Public safety services: must choose W for $X = 0, Y = 0$
- Other services: how to choose values of X and Y?
 - values reflect minimum acceptable victim performance
 - depend on criteria from previous slide
- Choices of X and Y determine W for each pair of services
- Result: The only practical way to define harmful interference is in terms of its practical consequences.
Conclusion

- An effective definition of harmful interference can be neither quantitative nor prospective
 - no single quantitative definition can give the right answer in every instance
 - no prospective definition can properly account for as-yet-unknown technologies
- Regulators must continue to evaluate on a case-by-case basis
 - but could be more transparent about the decision-making criteria they apply.
Thank you!

Mitchell Lazarus | 703-812-0440 | lazarus@fhhlaw.com

website: www.fhhlaw.com
blog: www.commlawblog.com